Quantum computational advantage attested by nonlocal games with the cyclic cluster state
We propose a set of Bell-type nonlocal games that can be used to prove an unconditional quantum advantage in an objective and hardware-agnostic manner. In these games, the circuit depth needed to prepare a cyclic cluster state and measure a subset of its Pauli stabilizers on a quantum computer is co...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
26.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose a set of Bell-type nonlocal games that can be used to prove an unconditional quantum advantage in an objective and hardware-agnostic manner. In these games, the circuit depth needed to prepare a cyclic cluster state and measure a subset of its Pauli stabilizers on a quantum computer is compared to that of classical Boolean circuits with the same, nearest-neighboring gate connectivity. Using a circuit-based trapped-ion quantum computer, we prepare and measure a six-qubit cyclic cluster state with an overall fidelity of 60.6% and 66.4%, before and after correcting for measurement-readout errors, respectively. Our experimental results indicate that while this fidelity readily passes conventional (or depth-0) Bell bounds for local hidden-variable models, it is on the cusp of demonstrating a higher probability of success than what is possible by depth-1 classical circuits. Our games offer a practical and scalable set of quantitative benchmarks for quantum computers in the pre-fault-tolerant regime as the number of qubits available increases. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2110.04277 |