The Simons Observatory: Beam characterization for the Small Aperture Telescopes

We use time-domain simulations of Jupiter observations to test and develop a beam reconstruction pipeline for the Simons Observatory Small Aperture Telescopes. The method relies on a map maker that estimates and subtracts correlated atmospheric noise and a beam fitting code designed to compensate fo...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Dachlythra, Nadia, Duivenvoorden, Adriaan J, Gudmundsson, Jon E, Hasselfield, Matthew, Coppi, Gabriele, Adler, Alexandre E, Alonso, David, Azzoni, Susanna, Chesmore, Grace E, Fabbian, Giulio, Ganga, Ken, Gerras, Remington G, Jaffe, Andrew H, Johnson, Bradley R, Keating, Brian, Keskitalo, Reijo, Kisner, Theodore S, Krachmalnicoff, Nicoletta, Lungu, Marius, Matsuda, Frederick, Naess, Sigurd, Page, Lyman, Puddu, Roberto, Puglisi, Giuseppe, Simon, Sara M, Teply, Grant, Tran Tsan, Wollack, Edward J, Wolz, Kevin, Xu, Zhilei
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 07.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We use time-domain simulations of Jupiter observations to test and develop a beam reconstruction pipeline for the Simons Observatory Small Aperture Telescopes. The method relies on a map maker that estimates and subtracts correlated atmospheric noise and a beam fitting code designed to compensate for the bias caused by the map maker. We test our reconstruction performance for four different frequency bands against various algorithmic parameters, atmospheric conditions and input beams. We additionally show the reconstruction quality as function of the number of available observations and investigate how different calibration strategies affect the beam uncertainty. For all of the cases considered, we find good agreement between the fitted results and the input beam model within a ~1.5% error for a multipole range l = 30 - 700 and an ~0.5% error for a multipole range l = 50 - 200. We conclude by using a harmonic-domain component separation algorithm to verify that the beam reconstruction errors and biases observed in our analysis do not significantly bias the Simons Observatory r-measurement.
ISSN:2331-8422
DOI:10.48550/arxiv.2304.08995