Tethered flexible polymer under oscillatory linear flow

The non-equilibrium structural and dynamical properties of a flexible polymer tethered to a reflecting wall and subject to oscillatory linear flow are studied by numerical simulations. Polymer is confined in two dimensions and is modeled as a bead-spring chain immersed in a fluid described by the Br...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Author Lamura, A
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 21.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The non-equilibrium structural and dynamical properties of a flexible polymer tethered to a reflecting wall and subject to oscillatory linear flow are studied by numerical simulations. Polymer is confined in two dimensions and is modeled as a bead-spring chain immersed in a fluid described by the Brownian multiparticle collision dynamics. At high strain, the polymer is stretched along the flow direction following the applied flow, then recoils at flow inversion before flipping and elongate again. When strain is reduced, it may happen that the chain recoils without flipping when the applied shear changes sign. Conformations are analyzed and compared to stiff polymers revealing more compact patterns at low strains and less stretched configurations at high strain. The dynamics is investigated by looking at the center-of-mass motion which shows a frequency doubling along the direction normal to the external flow. The center-of-mass correlation function is characterized by smaller amplitudes when reducing bending rigidity.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2407.15129