Paraphrasing with Large Language Models

Recently, large language models such as GPT-2 have shown themselves to be extremely adept at text generation and have also been able to achieve high-quality results in many downstream NLP tasks such as text classification, sentiment analysis and question answering with the aid of fine-tuning. We pre...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Witteveen, Sam, Andrews, Martin
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 21.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recently, large language models such as GPT-2 have shown themselves to be extremely adept at text generation and have also been able to achieve high-quality results in many downstream NLP tasks such as text classification, sentiment analysis and question answering with the aid of fine-tuning. We present a useful technique for using a large language model to perform the task of paraphrasing on a variety of texts and subjects. Our approach is demonstrated to be capable of generating paraphrases not only at a sentence level but also for longer spans of text such as paragraphs without needing to break the text into smaller chunks.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1911.09661