Multidimensional super- and subradiance in waveguide quantum electrodynamics
We study the collective decay rates of multi-dimensional quantum networks in which one-dimensional waveguides form an intersecting hyper-rectangular lattice, with qubits located at the lattice points. We introduce and motivate the \emph{dimensional reduction of poles} (DRoP) conjecture, which identi...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
14.11.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We study the collective decay rates of multi-dimensional quantum networks in which one-dimensional waveguides form an intersecting hyper-rectangular lattice, with qubits located at the lattice points. We introduce and motivate the \emph{dimensional reduction of poles} (DRoP) conjecture, which identifies all collective decay rates of such networks via a connection to waveguides with a one-dimensional topology (e.g. a linear chain of qubits). Using DRoP, we consider many-body effects such as superradiance, subradiance, and bound-states in continuum in multi-dimensional quantum networks. We find that, unlike one-dimensional linear chains, multi-dimensional quantum networks have superradiance in distinct levels, which we call multi-dimensional superradiance. Furthermore, we generalize the \(N^{-3}\) scaling of subradiance in a linear chain to \(d\)-dimensional networks. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2003.04906 |