Wavelength-Resolution SAR Ground Scene Prediction Based on Image Stack

This paper presents five different statistical methods for ground scene prediction (GSP) in wavelength-resolution synthetic aperture radar (SAR) images. The GSP image can be used as a reference image in a change detection algorithm yielding a high probability of detection and low false alarm rate. T...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Palm, B G, Alves, D I, Pettersson, M I, Vu, V T, Machado, R, Cintra, R J, Bayer, F M, Dammert, P, Hellsten, H
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 23.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents five different statistical methods for ground scene prediction (GSP) in wavelength-resolution synthetic aperture radar (SAR) images. The GSP image can be used as a reference image in a change detection algorithm yielding a high probability of detection and low false alarm rate. The predictions are based on image stacks, which are composed of images from the same scene acquired at different instants with the same flight geometry. The considered methods for obtaining the ground scene prediction include (i) autoregressive models; (ii) trimmed mean; (iii) median; (iv) intensity mean; and (v) mean. It is expected that the predicted image presents the true ground scene without change and preserves the ground backscattering pattern. The study indicate that the the median method provided the most accurate representation of the true ground. To show the applicability of the GSP, a change detection algorithm was considered using the median ground scene as a reference image. As a result, the median method displayed the probability of detection of \(97\%\) and a false alarm rate of 0.11/km$^2, when considering military vehicles concealed in a forest.
ISSN:2331-8422
DOI:10.48550/arxiv.2207.11400