Fourier Transform-Based Post-Processing Drift Compensation and Calibration Method for Scanning Probe Microscopy
Scanning probe microscopy (SPM) is ubiquitous in nanoscale science allowing the observation of features in real space down to the angstrom resolution. The scanning nature of SPM, wherein a sharp tip rasters the surface during which a physical setpoint is maintained via a control feedback loop, often...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
09.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Scanning probe microscopy (SPM) is ubiquitous in nanoscale science allowing the observation of features in real space down to the angstrom resolution. The scanning nature of SPM, wherein a sharp tip rasters the surface during which a physical setpoint is maintained via a control feedback loop, often implies that the image is subject to drift effects, leading to distortion of the resulting image. While there are \emph{in-operando} methods to compensate for the drift, correcting the residual linear drift in obtained images is often neglected. In this paper, we present a reciprocal space-based technique to compensate the linear drift in atomically-resolved scanning probe microscopy images without distinction of the fast and slow scanning directions; furthermore this method does not require the set of SPM images obtained for the different scanning directions. Instead, the compensation is made possible by the a priori knowledge of the lattice parameters. The method can also be used to characterize and calibrate the SPM instrument. |
---|---|
Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2311.05345 |