Decoy-State Quantum Key Distribution over a Long-Distance High-Loss Underwater Free-Space Channel
Atmospheric free space and fiber have been widely exploited as the channels for quantum communication, and have enabled inter-continent and inter-city applications. Air-sea free-space channel, being capable of linking the satellite-based quantum resource and underwater vehicle, has now become the la...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
14.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Atmospheric free space and fiber have been widely exploited as the channels for quantum communication, and have enabled inter-continent and inter-city applications. Air-sea free-space channel, being capable of linking the satellite-based quantum resource and underwater vehicle, has now become the last piece of the puzzle in building global quantum communication network. However, long-distance quantum communication penetrating water up to tens to hundreds of meters is extremely challenging due to the inevitable high loss. Here, we present an experimental demonstration of underwater decoy-state quantum key distribution against high loss, meanwhile keep a low quantum bit error rate less than 2.5% for different distances. By directly modulating blue-green lasers at a high speed of 50MHz and decoy-state protocol, we are able to for the first time reach a long-distance quantum key distribution that is unconditionally secure and can enable real-life air-sea quantum communication tasks. The demonstrated distance, even in coastal water of Jerlov types 2C, is up to 30 meters, about one-order improvement over the proof-in-principle demonstrations in previous experiments, and the channel loss is equivalent to 345-meter-long clean seawater of Jerlov type I, representing a key step forward to practical air-sea quantum communication. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2004.06708 |