Autonomous Stabilization of Fock States in an Oscillator against Multiphoton Losses
Fock states with a well-defined number of photons in an oscillator have shown a wide range of applications in quantum information science. Nonetheless, their usefulness has been marred by single and multiple photon losses due to unavoidable environment-induced dissipation. Though several dissipation...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
17.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Fock states with a well-defined number of photons in an oscillator have shown a wide range of applications in quantum information science. Nonetheless, their usefulness has been marred by single and multiple photon losses due to unavoidable environment-induced dissipation. Though several dissipation engineering methods have been developed to counteract the leading single-photon loss error, averting multiple photon losses remains elusive. Here, we experimentally demonstrate a dissipation engineering method that autonomously stabilizes multi-photon Fock states against losses of multiple photons using a cascaded selective photon-addition operation in a superconducting quantum circuit. Through measuring the photon-number populations and Wigner tomography of the oscillator states, we observe a prolonged preservation of nonclassical Wigner negativities for the stabilized Fock states \(\vert N\rangle\) with \(N=1,2,3\) for a duration of about 10 ms. Furthermore, the dissipation engineering method demonstrated here also facilitates the implementation of a non-unitary operation for resetting a binomially-encoded logical qubit. These results highlight potential applications in error-correctable quantum information processing against multi-photon-loss errors. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2308.08296 |