Exploiting Multiple Levels of Parallelism in Sparse Matrix-Matrix Multiplication

Sparse matrix-matrix multiplication (or SpGEMM) is a key primitive for many high-performance graph algorithms as well as for some linear solvers, such as algebraic multigrid. The scaling of existing parallel implementations of SpGEMM is heavily bound by communication. Even though 3D (or 2.5D) algori...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Azad, Ariful, Ballard, Grey, Aydin Buluc, Demmel, James, Grigori, Laura, Schwartz, Oded, Toledo, Sivan, Williams, Samuel
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 16.11.2016
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.1510.00844

Cover

More Information
Summary:Sparse matrix-matrix multiplication (or SpGEMM) is a key primitive for many high-performance graph algorithms as well as for some linear solvers, such as algebraic multigrid. The scaling of existing parallel implementations of SpGEMM is heavily bound by communication. Even though 3D (or 2.5D) algorithms have been proposed and theoretically analyzed in the flat MPI model on Erdos-Renyi matrices, those algorithms had not been implemented in practice and their complexities had not been analyzed for the general case. In this work, we present the first ever implementation of the 3D SpGEMM formulation that also exploits multiple (intra-node and inter-node) levels of parallelism, achieving significant speedups over the state-of-the-art publicly available codes at all levels of concurrencies. We extensively evaluate our implementation and identify bottlenecks that should be subject to further research.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1510.00844