Optimal control of coherent light scattering for binary decision problems
Due to quantum noise fluctuations, the rate of error achievable in decision problems involving several possible configurations of a scattering system is subject to a fundamental limit known as the Helstrom bound. Here, we present a general framework to calculate and minimize this bound using coheren...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
17.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Due to quantum noise fluctuations, the rate of error achievable in decision problems involving several possible configurations of a scattering system is subject to a fundamental limit known as the Helstrom bound. Here, we present a general framework to calculate and minimize this bound using coherent probe fields with tailored spatial distributions. As an example, we experimentally study a target located in between two disordered scattering media. We first show that the optimal field distribution can be directly identified using a general approach based on scattering matrix measurements. We then demonstrate that this optimal light field successfully probes the presence of the target with a number of photons that is reduced by more than two orders of magnitude as compared to unoptimized fields. |
---|---|
Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2108.03755 |