CLIPCleaner: Cleaning Noisy Labels with CLIP

Learning with Noisy labels (LNL) poses a significant challenge for the Machine Learning community. Some of the most widely used approaches that select as clean samples for which the model itself (the in-training model) has high confidence, e.g., `small loss', can suffer from the so called `self...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Chen, Feng, Tzimiropoulos, Georgios, Patras, Ioannis
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 16.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Learning with Noisy labels (LNL) poses a significant challenge for the Machine Learning community. Some of the most widely used approaches that select as clean samples for which the model itself (the in-training model) has high confidence, e.g., `small loss', can suffer from the so called `self-confirmation' bias. This bias arises because the in-training model, is at least partially trained on the noisy labels. Furthermore, in the classification case, an additional challenge arises because some of the label noise is between classes that are visually very similar (`hard noise'). This paper addresses these challenges by proposing a method (\textit{CLIPCleaner}) that leverages CLIP, a powerful Vision-Language (VL) model for constructing a zero-shot classifier for efficient, offline, clean sample selection. This has the advantage that the sample selection is decoupled from the in-training model and that the sample selection is aware of the semantic and visual similarities between the classes due to the way that CLIP is trained. We provide theoretical justifications and empirical evidence to demonstrate the advantages of CLIP for LNL compared to conventional pre-trained models. Compared to current methods that combine iterative sample selection with various techniques, \textit{CLIPCleaner} offers a simple, single-step approach that achieves competitive or superior performance on benchmark datasets. To the best of our knowledge, this is the first time a VL model has been used for sample selection to address the problem of Learning with Noisy Labels (LNL), highlighting their potential in the domain.
ISSN:2331-8422
DOI:10.48550/arxiv.2408.10012