Magnetoelectric effect and phase transitions in CuO in external magnetic fields

Apart from being so far the only known binary multiferroic compound, CuO has a much higher transition temperature into the multiferroic state, 230 K, than any other known material in which the electric polarization is induced by spontaneous magnetic order, typically lower than 100 K. Although the ma...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Wang, Zhaosheng, Qureshi, Navid, Yasin, Shadi, Mukhin, Alexander, Ressouche, Eric, Zherlitsyn, Sergei, Skourski, Yurii, Geshev, Julian, Ivanov, Vsevolod, Gospodinov, Marin, Skumryev, Vassil
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 18.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Apart from being so far the only known binary multiferroic compound, CuO has a much higher transition temperature into the multiferroic state, 230 K, than any other known material in which the electric polarization is induced by spontaneous magnetic order, typically lower than 100 K. Although the magnetically induced ferroelectricity of CuO is firmly established, no magnetoelectric effect has been observed so far as direct crosstalk between bulk magnetization and electric polarization counterparts. Here we demonstrate that high magnetic fields of about 50 T are able to suppress the helical modulation of the spins in the multiferroic phase and dramatically affect the electric polarization. Furthermore, just below the spontaneous transition from commensurate (paraelectric) to incommensurate (ferroelectric) structures at 213 K, even modest magnetic fields induce a transition into the incommensurate structure and then suppress it at higher field. Thus, remarkable hidden magnetoelectric features are uncovered, establishing CuO as prototype multiferroic with abundance of competitive magnetic interactions.
ISSN:2331-8422
DOI:10.48550/arxiv.1601.04607