Solid Harmonic Wavelet Scattering for Predictions of Molecule Properties
We present a machine learning algorithm for the prediction of molecule properties inspired by ideas from density functional theory. Using Gaussian-type orbital functions, we create surrogate electronic densities of the molecule from which we compute invariant "solid harmonic scattering coeffici...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present a machine learning algorithm for the prediction of molecule properties inspired by ideas from density functional theory. Using Gaussian-type orbital functions, we create surrogate electronic densities of the molecule from which we compute invariant "solid harmonic scattering coefficients" that account for different types of interactions at different scales. Multi-linear regressions of various physical properties of molecules are computed from these invariant coefficients. Numerical experiments show that these regressions have near state of the art performance, even with relatively few training examples. Predictions over small sets of scattering coefficients can reach a DFT precision while being interpretable. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1805.00571 |