A canonical transformation to eliminate resonant perturbations I

We study dynamical systems which admit action-angle variables at leading order which are subject to nearly resonant perturbations. If the frequencies characterizing the unperturbed system are not in resonance, the long-term dynamical evolution may be integrated by orbit-averaging over the high-frequ...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Deme, Barnabás, Kocsis, Bence
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 27.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study dynamical systems which admit action-angle variables at leading order which are subject to nearly resonant perturbations. If the frequencies characterizing the unperturbed system are not in resonance, the long-term dynamical evolution may be integrated by orbit-averaging over the high-frequency angles, thereby evolving the orbit-averaged effect of the perturbations. It is well known that such integrators may be constructed via a canonical transformation, which eliminates the high frequency variables from the orbit-averaged quantities. An example of this algorithm in celestial mechanics is the von Zeipel transformation. However if the perturbations are inside or close to a resonance, i.e. the frequencies of the unperturbed system are commensurate, these canonical transformations are subject to divergences. We introduce a canonical transformation which eliminates the high frequency phase variables in the Hamiltonian without encountering divergences. This leads to a well-behaved symplectic integrator. We demonstrate the algorithm through two examples: a resonantly perturbed harmonic oscillator and the gravitational three-body problem in mean motion resonance.
AbstractList We study dynamical systems which admit action-angle variables at leading order which are subject to nearly resonant perturbations. If the frequencies characterizing the unperturbed system are not in resonance, the long-term dynamical evolution may be integrated by orbit-averaging over the high-frequency angles, thereby evolving the orbit-averaged effect of the perturbations. It is well known that such integrators may be constructed via a canonical transformation, which eliminates the high frequency variables from the orbit-averaged quantities. An example of this algorithm in celestial mechanics is the von Zeipel transformation. However if the perturbations are inside or close to a resonance, i.e. the frequencies of the unperturbed system are commensurate, these canonical transformations are subject to divergences. We introduce a canonical transformation which eliminates the high frequency phase variables in the Hamiltonian without encountering divergences. This leads to a well-behaved symplectic integrator. We demonstrate the algorithm through two examples: a resonantly perturbed harmonic oscillator and the gravitational three-body problem in mean motion resonance.
We study dynamical systems which admit action-angle variables at leading order which are subject to nearly resonant perturbations. If the frequencies characterizing the unperturbed system are not in resonance, the long-term dynamical evolution may be integrated by orbit-averaging over the high-frequency angles, thereby evolving the orbit-averaged effect of the perturbations. It is well known that such integrators may be constructed via a canonical transformation, which eliminates the high frequency variables from the orbit-averaged quantities. An example of this algorithm in celestial mechanics is the von Zeipel transformation. However if the perturbations are inside or close to a resonance, i.e. the frequencies of the unperturbed system are commensurate, these canonical transformations are subject to divergences. We introduce a canonical transformation which eliminates the high frequency phase variables in the Hamiltonian without encountering divergences. This leads to a well-behaved symplectic integrator. We demonstrate the algorithm through two examples: a resonantly perturbed harmonic oscillator and the gravitational three-body problem in mean motion resonance.
Author Kocsis, Bence
Deme, Barnabás
Author_xml – sequence: 1
  givenname: Barnabás
  surname: Deme
  fullname: Deme, Barnabás
– sequence: 2
  givenname: Bence
  surname: Kocsis
  fullname: Kocsis, Bence
BackLink https://doi.org/10.48550/arXiv.2103.00013$$DView paper in arXiv
https://doi.org/10.3847/1538-3881/abfb6d$$DView published paper (Access to full text may be restricted)
BookMark eNotj1FLwzAUhYMoOOd-gE8GfG5Nb5I2fXMMp4OBL3svN20KHW1Sk1T031s7ny6c-3E43x25ts4aQh4ylgolJXtG_919pZAxnjLGMn5FVsB5ligBcEs2IZznGPICpOQr8rKlNc4VXY09jR5taJ0fMHbO0uio6buhsxgN9SY4izbS0fg4eb0ggR7uyU2LfTCb_7smp_3rafeeHD_eDrvtMUEJkBRYlJhLbLWqlVYNA6UYEyCaRrKmFSjN_BbQtDmCAK3boihrVZqyzoscNF-Tx0vtoleNvhvQ_1R_mtWiORNPF2L07nMyIVZnN3k7b6pAlDJTOVfAfwFyg1ci
ContentType Paper
Journal Article
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ALA
GOX
DOI 10.48550/arxiv.2103.00013
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Nonlinear Science
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2103_00013
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ALA
GOX
ID FETCH-LOGICAL-a522-7a79a65afb8c8b8d028800424dd50df4a5ea6542df6a242bbf779c89e9c6762b3
IEDL.DBID BENPR
IngestDate Tue Jul 22 23:13:41 EDT 2025
Mon Jun 30 09:28:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a522-7a79a65afb8c8b8d028800424dd50df4a5ea6542df6a242bbf779c89e9c6762b3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2495186382?pq-origsite=%requestingapplication%
PQID 2495186382
PQPubID 2050157
ParticipantIDs arxiv_primary_2103_00013
proquest_journals_2495186382
PublicationCentury 2000
PublicationDate 20220627
PublicationDateYYYYMMDD 2022-06-27
PublicationDate_xml – month: 06
  year: 2022
  text: 20220627
  day: 27
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8016542
SecondaryResourceType preprint
Snippet We study dynamical systems which admit action-angle variables at leading order which are subject to nearly resonant perturbations. If the frequencies...
We study dynamical systems which admit action-angle variables at leading order which are subject to nearly resonant perturbations. If the frequencies...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Algorithms
Celestial mechanics
Harmonic oscillators
High frequencies
Integrators
Orbital mechanics
Orbital resonances (celestial mechanics)
Perturbation
Physics - Chaotic Dynamics
Physics - Earth and Planetary Astrophysics
Three body problem
Transformations (mathematics)
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV1LSwMxEB5qT15EUWm1Sg5eg9skm2RvFrFWQb1U2NuSbBIQpFvaVfz5TrJbFMRrmEAyeXyTzOMDuJLMCstCoDELkwqvclrwXNIggmBO6swnj-7Ts1y8iscyLwdAdrkwZvP19tnVB7bba3yPxAKkWaSl3WMshmzdv5SdczKV4urlf-TQxkxNf67WhBfzQzjoDT0y61bmCAZ-dQw3M4JTaVIuIml_2YzNirQN8e-JY6v1BB_BTQxRIWu_QVCw3b8aeTiB5fxuebugPYcBNWjZUGVUYWRugtW1ttohmuvkbXQuz1wQJvcmUka5IA2CpbVBqaLWhS9qideU5acwxFH5EZBsGoTjPHKDO6EUKp_X3AoWhHDeMDeGUZp5te7KVFRRKcm3zMcw2Smj6rfotoqk01ONx4-d_d_zHPZZjPfPJGVqAsN28-EvEIVbe5mW4huF7Icn
  priority: 102
  providerName: Cornell University
Title A canonical transformation to eliminate resonant perturbations I
URI https://www.proquest.com/docview/2495186382
https://arxiv.org/abs/2103.00013
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aRfDmk1ZrycFr7DabTbInX_Sh0FqkQm8l2SQgSLe2q3jytztJtyoIXhayC0uSCTOT-WbmQ-icU800dY74KkzCrEhJlqScOOYYNVzGNiC6wxEfPLH7aTqtAm6rKq1yoxODojZF7mPkbc-R3JFwWujl4pV41iiPrlYUGtsoAhUsZQ1FN93R-PE7ykK5AJ85WcOZoXlXWy0_nt8v4KbjW5vGntYgCq_-KONgYXp7KBqrhV3uoy07P0A7ITEzXx2iq2sMiy9C9SIuf3mZxRyXBbYvgZWrtBiuzYVPasHwFzAjeh2Jw3dHaNLrTm4HpGI9IAp8ISKUyBRPldMyl1oasP8y4JPGpLFxTKVWeZIp47gC86q1EyLLZWaznINi08kxqsGsbB3huOOYSRLPJm6YECCuJE80o44xYxU1DVQPK58t1o0tZn5TAhqdNFBzsxmz6lCvZj8iOPn_8ynapb5KIOaEiiaqlcs3ewa2u9QttC17_VYlJhj1H6bwHH52vwABlZyL
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB7URfTmE9dnDnqM1iRN2oOoqOuuLzys4K0kTQKC2HW3vn6U_9FJ1lVB8Oa1hdDOTOY98wFsSmaEYd7TMIVJhVMpzXkqqRdeMCuzxMWK7uWVbN-Is9v0dgzeR7Mwoa1ypBOjorZVGXLkOwEjeTdDaWH7vUcaUKNCdXUEoTEUi3P39oIh22Cvc4z83WKsddI9atNPVAGq0degSqtcy1R7k5WZySza1yzW_6xNE-uFTp0OIE7WS43myxivVF5muctLiYrDcDx2HBqCoyEPg-mt06-UDpMKHXQ-rJ3GTWE7uv9697yNYVXYo5oEDIVGfPRL80dz1pqBxrXuuf4sjLmHOZiMXaDlYB4ODglSuoqjkqT-4dJWD6SuiLuPEGC1IxijV6GDhuApaLPMMO1HOgvQ_Q9iLMIEfpVbApLsemE5D9DlViiFssFLbgTzQlinmW3CUvzzojfcolEEosTSN2_C6ogYxecNGhTf_F7--_UGTLW7lxfFRefqfAWmWRhPSCRlahUm6v6TW0OnoTbrkVUEin8WjQ8k-tQ9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+canonical+transformation+to+eliminate+resonant+perturbations+I&rft.jtitle=arXiv.org&rft.au=Deme%2C+Barnab%C3%A1s&rft.au=Kocsis%2C+Bence&rft.date=2022-06-27&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2103.00013