A canonical transformation to eliminate resonant perturbations I

We study dynamical systems which admit action-angle variables at leading order which are subject to nearly resonant perturbations. If the frequencies characterizing the unperturbed system are not in resonance, the long-term dynamical evolution may be integrated by orbit-averaging over the high-frequ...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Deme, Barnabás, Kocsis, Bence
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 27.06.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study dynamical systems which admit action-angle variables at leading order which are subject to nearly resonant perturbations. If the frequencies characterizing the unperturbed system are not in resonance, the long-term dynamical evolution may be integrated by orbit-averaging over the high-frequency angles, thereby evolving the orbit-averaged effect of the perturbations. It is well known that such integrators may be constructed via a canonical transformation, which eliminates the high frequency variables from the orbit-averaged quantities. An example of this algorithm in celestial mechanics is the von Zeipel transformation. However if the perturbations are inside or close to a resonance, i.e. the frequencies of the unperturbed system are commensurate, these canonical transformations are subject to divergences. We introduce a canonical transformation which eliminates the high frequency phase variables in the Hamiltonian without encountering divergences. This leads to a well-behaved symplectic integrator. We demonstrate the algorithm through two examples: a resonantly perturbed harmonic oscillator and the gravitational three-body problem in mean motion resonance.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.2103.00013