Constraints on the Emission of Gamma Rays from M31 with HAWC
Cosmic rays, along with stellar radiation and magnetic fields, are known to make up a significant fraction of the energy density of galaxies such as the Milky Way. When cosmic rays interact in the interstellar medium, they produce gamma-ray emission which provides an important indication of how the...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
26.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Cosmic rays, along with stellar radiation and magnetic fields, are known to make up a significant fraction of the energy density of galaxies such as the Milky Way. When cosmic rays interact in the interstellar medium, they produce gamma-ray emission which provides an important indication of how the cosmic rays propagate. Gamma rays from the Andromeda Galaxy (M31), located 785 kpc away, provide a unique opportunity to study cosmic-ray acceleration and diffusion in a galaxy with a structure and evolution very similar to the Milky Way. Using 33 months of data from the High Altitude Water Cherenkov Observatory, we search for TeV gamma rays from the galactic plane of M31. We also investigate past and present evidence of galactic activity in M31 by searching for Fermi Bubble-like structures above and below the galactic nucleus. No significant gamma-ray emission is observed, so we use the null result to compute upper limits on the energy density of cosmic rays \(>10\) TeV in M31. The computed upper limits are approximately ten times higher than expected from the extrapolation of the Fermi LAT results. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2001.04065 |