Two universal physical principles shape the power-law statistics of real-world networks
The study of complex networks has pursued an understanding of macroscopic behavior by focusing on power-laws in microscopic observables. Here, we uncover two universal fundamental physical principles that are at the basis of complex networks generation. These principles together predict the generic...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
22.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The study of complex networks has pursued an understanding of macroscopic behavior by focusing on power-laws in microscopic observables. Here, we uncover two universal fundamental physical principles that are at the basis of complex networks generation. These principles together predict the generic emergence of deviations from ideal power laws, which were previously discussed away by reference to the thermodynamic limit. Our approach proposes a paradigm shift in the physics of complex networks, toward the use of power-law deviations to infer meso-scale structure from macroscopic observations. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1505.06005 |