Entanglement detection via atomic deflection
We report on criteria to detect entanglement between the light modes of two crossed optical cavities by analyzing the transverse deflection patterns of an atomic beam. The photon exchange between the modes and the atoms occurs around the overlapping nodes of associated standing waves, which generate...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
31.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We report on criteria to detect entanglement between the light modes of two crossed optical cavities by analyzing the transverse deflection patterns of an atomic beam. The photon exchange between the modes and the atoms occurs around the overlapping nodes of associated standing waves, which generates the two-dimensional (2D) version of the Optical Stern-Gerlach (OSG) effect. In this optical cross-cavity setup, we show that the discrete signatures of the fields states, left in the momentum distribution of the deflected atoms, may reveal entanglement for a certain class of two-mode states. For a single photon, we present the possibility of quantifying entanglement by the rotation of the momentum distribution. For a larger number of photons, we demonstrate that quantum interference precludes the population of specific momentum states revealing maximum entanglement between the light modes. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1703.03675 |