Direct evidence for flat bands in twisted bilayer graphene from nano-ARPES

Transport experiments in twisted bilayer graphene revealed multiple superconducting domes separated by correlated insulating states. These properties are generally associated with strongly correlated states in a flat mini-band of the hexagonal moiré superlattice as it was predicted by band structure...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Lisi, Simone, Lu, Xiaobo, Benschop, Tjerk, de Jong, Tobias A, Stepanov, Petr, Duran, Jose R, Margot, Florian, Cucchi, Irène, Cappelli, Edoardo, Hunter, Andrew, Tamai, Anna, Kandyba, Viktor, Giampietri, Alessio, Barinov, Alexei, Jobst, Johannes, Stalman, Vincent, Leeuwenhoek, Maarten, Watanabe, Kenji, Taniguchi, Takashi, Rademaker, Louk, Sense Jan van der Molen, Allan, Milan, Efetov, Dmitri K, Baumberger, Felix
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 06.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Transport experiments in twisted bilayer graphene revealed multiple superconducting domes separated by correlated insulating states. These properties are generally associated with strongly correlated states in a flat mini-band of the hexagonal moiré superlattice as it was predicted by band structure calculations. Evidence for such a flat band comes from local tunneling spectroscopy and electronic compressibility measurements, reporting two or more sharp peaks in the density of states that may be associated with closely spaced van Hove singularities. Direct momentum resolved measurements proved difficult though. Here, we combine different imaging techniques and angle resolved photoemission with simultaneous real and momentum space resolution (nano-ARPES) to directly map the band dispersion in twisted bilayer graphene devices near charge neutrality. Our experiments reveal large areas with homogeneous twist angle that support a flat band with spectral weight that is highly localized in momentum space. The flat band is separated from the dispersive Dirac bands which show multiple moiré hybridization gaps. These data establish the salient features of the twisted bilayer graphene band structure.
ISSN:2331-8422
DOI:10.48550/arxiv.2002.02289