Scattering due to non-magnetic disorder in 2D anisotropic d-wave high Tc superconductors

Inspired by the studies on the influence of transition metal impurities in high Tc superconductors and what is already known about nonmagnetic suppression of Tc in unconventional superconductors, we set out to investigate the behavior of the nonmagnetic disordered elastic scattering for a realistic...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Contreras, P, Osorio, Dianela
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 22.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Inspired by the studies on the influence of transition metal impurities in high Tc superconductors and what is already known about nonmagnetic suppression of Tc in unconventional superconductors, we set out to investigate the behavior of the nonmagnetic disordered elastic scattering for a realistic 2D anisotropic high Tc superconductor with line nodes and a Fermi surface in the tight-binding approximation. For this purpose, we performed a detailed self-consistent 2D numerical study of the disordered averaged scattering matrix with nonmagnetic impurities and a singlet line nodes order parameter, varying the concentration and the strength of the impurities potential in the Born, intermediate and unitary limits. In a high Tc anisotropic superconductor with a tight binding dispersion law averaging over the Fermi surface, including hopping parameters and an order parameter in agreement with experimental data, the tight-binding approximation reflects the anisotropic effects. In this study, we also included a detailed visualization of the behavior of the scattering matrix with different sets of physical parameters involved in the nonmagnetic disorder, which allowed us to model the dressed scattering behavior in different regimes for very low and high energies. With this study, we demonstrate that the scattering elastic matrix is affected by the non-magnetic disorder, as well as the importance of an order parameter and a Fermi surface in agreement with experiments when studying this effect in unconventional superconductors.
ISSN:2331-8422
DOI:10.48550/arxiv.2107.01374