Singularities in nearly-uniform 1D condensates due to quantum diffusion
Dissipative systems can often exhibit wavelength-dependent loss rates. One prominent example is Rydberg polaritons formed by electromagnetically-induced transparency, which have long been a leading candidate for studying the physics of interacting photons and also hold promise as a platform for quan...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
12.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Dissipative systems can often exhibit wavelength-dependent loss rates. One prominent example is Rydberg polaritons formed by electromagnetically-induced transparency, which have long been a leading candidate for studying the physics of interacting photons and also hold promise as a platform for quantum information. In this system, dissipation is in the form of quantum diffusion, i.e., proportional to \(k^2\) (\(k\) being the wavevector) and vanishing at long wavelengths as \(k\to 0\). Here, we show that one-dimensional condensates subject to this type of loss are unstable to long-wavelength density fluctuations in an unusual manner: after a prolonged period in which the condensate appears to relax to a uniform state, local depleted regions quickly form and spread ballistically throughout the system. We connect this behavior to the leading-order equation for the nearly-uniform condensate -- a dispersive analogue to the Kardar-Parisi-Zhang (KPZ) equation -- which develops singularities in finite time. Furthermore, we show that the wavefronts of the depleted regions are described by purely dissipative solitons within a pair of hydrodynamic equations, with no counterpart in lossless condensates. We close by discussing conditions under which such singularities and the resulting solitons can be physically realized. |
---|---|
Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2103.06293 |