Area quasi-minimizing partitions with a graphical constraint: relaxation and two-dimensional partial regularity

We consider a variational model for periodic partitions of the upper half-space into three regions, where two of them have prescribed volume and are subject to the geometrical constraint that their union is the subgraph of a function, whose graph is a free surface. The energy of a configuration is g...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Bonacini, Marco, Cristoferi, Riccardo
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 06.10.2022
Subjects
Online AccessGet full text
ISSN2331-8422
DOI10.48550/arxiv.2107.13325

Cover

Loading…
Abstract We consider a variational model for periodic partitions of the upper half-space into three regions, where two of them have prescribed volume and are subject to the geometrical constraint that their union is the subgraph of a function, whose graph is a free surface. The energy of a configuration is given by the weighted sum of the areas of the interfaces between the different regions, and a general volume-order term. We establish existence of minimizing configurations via relaxation of the energy involved, in any dimension. Moreover, we prove partial regularity results for volume-constrained minimizers in two space dimensions. Thin films of diblock copolymers are a possible application and motivation for considering this problem.
AbstractList We consider a variational model for periodic partitions of the upper half-space into three regions, where two of them have prescribed volume and are subject to the geometrical constraint that their union is the subgraph of a function, whose graph is a free surface. The energy of a configuration is given by the weighted sum of the areas of the interfaces between the different regions, and a general volume-order term. We establish existence of minimizing configurations via relaxation of the energy involved, in any dimension. Moreover, we prove partial regularity results for volume-constrained minimizers in two space dimensions. Thin films of diblock copolymers are a possible application and motivation for considering this problem.
We consider a variational model for periodic partitions of the upper half-space into three regions, where two of them have prescribed volume and are subject to the geometrical constraint that their union is the subgraph of a function, whose graph is a free surface. The energy of a configuration is given by the weighted sum of the areas of the interfaces between the different regions, and a general volume-order term. We establish existence of minimizing configurations via relaxation of the energy involved, in any dimension. Moreover, we prove partial regularity results for volume-constrained minimizers in two space dimensions. Thin films of diblock copolymers are a possible application and motivation for considering this problem.
Author Bonacini, Marco
Cristoferi, Riccardo
Author_xml – sequence: 1
  givenname: Marco
  surname: Bonacini
  fullname: Bonacini, Marco
– sequence: 2
  givenname: Riccardo
  surname: Cristoferi
  fullname: Cristoferi, Riccardo
BackLink https://doi.org/10.48550/arXiv.2107.13325$$DView paper in arXiv
https://doi.org/10.1007/s00332-022-09852-3$$DView published paper (Access to full text may be restricted)
BookMark eNotkF1rwjAYhcPYYM75A3a1wK7r8tmmu5OxLxB24315a6JG2rQm6dT9-kXd1YHDw-Hw3KFr1zmD0AMlU6GkJM_gD_ZnyigpppRzJq_QiHFOMyUYu0WTELaEEJYXTEo-Qt3MG8C7AYLNWutsa3-tW-MefLTRdi7gvY0bDHjtod_YJTR4mdrowbr4gr1p4AAnEIPTOO67TNvWuJCahJ5nUnqzHhrwNh7v0c0KmmAm_zlGi_e3xetnNv_--HqdzTOQjGRCcMW1IHWhBPC6kFwqWEmQWpWilJoQMIItS220ISXVLK_lipe15lDTUig-Ro-X2bONqve2BX-sTlaqs5VEPF2I3ne7wYRYbbvBp9OhSmZymiuVE_4HdLtpEA
ContentType Paper
Journal Article
Copyright 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
http://arxiv.org/licenses/nonexclusive-distrib/1.0
Copyright_xml – notice: 2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: http://arxiv.org/licenses/nonexclusive-distrib/1.0
DBID 8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
DOI 10.48550/arxiv.2107.13325
DatabaseName ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
arXiv Mathematics
arXiv.org
DatabaseTitle Publicly Available Content Database
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: GOX
  name: arXiv.org
  url: http://arxiv.org/find
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2331-8422
ExternalDocumentID 2107_13325
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FG
ABJCF
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FRJ
HCIFZ
L6V
M7S
M~E
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
AKZ
GOX
ID FETCH-LOGICAL-a520-44383d40b784a3b75358af5a5d89495d00ae42c9dede091d26b5f39bd3ab19483
IEDL.DBID BENPR
IngestDate Tue Jul 22 23:02:28 EDT 2025
Mon Jun 30 09:19:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a520-44383d40b784a3b75358af5a5d89495d00ae42c9dede091d26b5f39bd3ab19483
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
OpenAccessLink https://www.proquest.com/docview/2556168860?pq-origsite=%requestingapplication%
PQID 2556168860
PQPubID 2050157
ParticipantIDs arxiv_primary_2107_13325
proquest_journals_2556168860
PublicationCentury 2000
PublicationDate 20221006
PublicationDateYYYYMMDD 2022-10-06
PublicationDate_xml – month: 10
  year: 2022
  text: 20221006
  day: 06
PublicationDecade 2020
PublicationPlace Ithaca
PublicationPlace_xml – name: Ithaca
PublicationTitle arXiv.org
PublicationYear 2022
Publisher Cornell University Library, arXiv.org
Publisher_xml – name: Cornell University Library, arXiv.org
SSID ssj0002672553
Score 1.8114955
SecondaryResourceType preprint
Snippet We consider a variational model for periodic partitions of the upper half-space into three regions, where two of them have prescribed volume and are subject to...
We consider a variational model for periodic partitions of the upper half-space into three regions, where two of them have prescribed volume and are subject to...
SourceID arxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Block copolymers
Configurations
Constraints
Mathematics - Analysis of PDEs
Minimal surfaces
Regularity
Thin films
Two dimensional models
SummonAdditionalLinks – databaseName: arXiv.org
  dbid: GOX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwdV2xTsMwELXaTiwIBKiFgjywBhLHdh22ClEqJGApUrfoHDtSB9LSplDx9dw5qRgQU6TIzvDO8r1n594xdp0lAGBUGfm0pNMqU0QgXRHRflyOvPbWUu3w84uevsmnuZp3GN_XwsB6t_hs_IHt5hb1yOgGVZRQXdYVgn7ZenydN5eTwYqrHf87DjlmePVnaw35YnLEDluix8dNZI5Zx1cnbDlGjsY_trBZRGTq8b74xtTBVxS_sAA4nYty4MFHmvDjBRE46uNQ33EqPNkFKDlUjtdfy8iRO3_jrNF8Bp_r0F-eutKdstnkYXY_jdqWBxEo1HGSjEOdjO3ISEgtSglloFSgnMlQybg4Bi9FkTnvPCZ6J7RVZZpZl4JNMmnSM9arlpXvM54VZVIgRi71pVQOMdfghEP2gAJOKT1g_QBUvmpcLXLCMA8YDthwj13eruhNTlZliTZGx-f_z7xgB4LKA-iCXQ9Zr15v_SUm7dpehcj9AEydmz0
  priority: 102
  providerName: Cornell University
Title Area quasi-minimizing partitions with a graphical constraint: relaxation and two-dimensional partial regularity
URI https://www.proquest.com/docview/2556168860
https://arxiv.org/abs/2107.13325
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT4NAEN7YEhNvPtNqbfbglZY3ixejpo-YtDamJr2RhV2SHgQKVBsP_nZnFqoHEy8QIHD4Zpmdx-73EXITmJxz5ia6tBOsVrFY546IdfTHiS89GUW4d3g296avztPKXTUFt7JZVrn3icpRiyzGGvkQqbJMjzHPuMs3OqpGYXe1kdBoEQ1cMIMRrj2M5ouXnyqL5fnwol23MxV515AXu_X7ADIdfwD5GUpka-rWH2esZpjxMdEWPJfFCTmQ6Sk5VAsz4_KMZPcQ1dHNlpdrHWlA3tafMNnQHC2uhgzFSirlVDFPI-I0xpAPlR-qW4pbVXYKfMpTQauPTBfI519zcdSfgXOhFOlRx-6cLMej5eNUb0QSdO5C5ucg1ahwjMhnDrcjSD5cxhOXu4IFkPsIw-DSseJASCEhNBCWF7mJHUTC5pEZOMy-IO00S2WH0CBOzBgwErZMHFeAlTwuLAHxBqR8gH6XdBRQYV7zYISIYagw7JLeHruw-QfK8Ndil_8_viJHFm4qwLa81yPtqtjKa5jqq6hPWmw86TdWhavJ8wqOs6_RN9sKsIE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5qg-jNJ61W3YMe00feEUR8tLT2QZEKvYVNdiM92PRpq__J_-jMptWD4K2nQAJLmJmdnW925huAS7_COffsWJdmTNkqL9K5JSKd_HHsSkeGIfUOtztO_cV66tv9DHyte2GorHLtE5WjFklEOfISUWVVHM9zyrejsU5To-h2dT1CIzWLpvxYIGSb3jQeUb9XhlGr9h7q-mqqgM5thEoWcXMKqxy6nsXNEKN12-OxzW3h-QgWRLnMpWVEvpBC4lkqDCe0Y9MPhclDBPyeictugWaZGClkQbuvdrrPP0kdw3HxP8309lRxhZX4ZDl4LyKwcosIB2kit6Ze_fH96kCr7YHW5SM52YeMHB7AtqoDjaaHkNxhEMnGcz4d6MQ68jb4xLONjcjAlIUyStwyzhTRNSmYRRRh0qCJ2TWjzpil0jXjQ8Fmi0QXND4gpf5Il8HnRL5S9SsCgCPobUJ6x5AdJkOZA-ZHcSVCGQlTxpYt0CgcLgyB4Q0iTFR2HnJKUMEopd0ISIaBkmEeCmvZBastNw1-DeTk_88XsFPvtVtBq9FpnsKuQf0MVBHgFCA7m8zlGUYZs_B8pVsGwYat6RtEeOi2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Area+quasi-minimizing+partitions+with+a+graphical+constraint%3A+relaxation+and+two-dimensional+partial+regularity&rft.jtitle=arXiv.org&rft.au=Bonacini%2C+Marco&rft.au=Cristoferi%2C+Riccardo&rft.date=2022-10-06&rft.pub=Cornell+University+Library%2C+arXiv.org&rft.eissn=2331-8422&rft_id=info:doi/10.48550%2Farxiv.2107.13325