Area quasi-minimizing partitions with a graphical constraint: relaxation and two-dimensional partial regularity
We consider a variational model for periodic partitions of the upper half-space into three regions, where two of them have prescribed volume and are subject to the geometrical constraint that their union is the subgraph of a function, whose graph is a free surface. The energy of a configuration is g...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
06.10.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We consider a variational model for periodic partitions of the upper half-space into three regions, where two of them have prescribed volume and are subject to the geometrical constraint that their union is the subgraph of a function, whose graph is a free surface. The energy of a configuration is given by the weighted sum of the areas of the interfaces between the different regions, and a general volume-order term. We establish existence of minimizing configurations via relaxation of the energy involved, in any dimension. Moreover, we prove partial regularity results for volume-constrained minimizers in two space dimensions. Thin films of diblock copolymers are a possible application and motivation for considering this problem. |
---|---|
Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.2107.13325 |