The Crystallography of Aluminum and its Alloys

This chapter begins with pure aluminium and a discussion of the form of the crystal structure and different unit cells that can be used to describe the crystal structure. Measurements of the face-centred cubic lattice parameter and thermal expansion coefficient in pure aluminium are reviewed and par...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Author Nakashima, Philip N H
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 04.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This chapter begins with pure aluminium and a discussion of the form of the crystal structure and different unit cells that can be used to describe the crystal structure. Measurements of the face-centred cubic lattice parameter and thermal expansion coefficient in pure aluminium are reviewed and parametrisations given that allow the reader to evaluate them across the full range of temperatures where aluminium is a solid. A new concept called the vacancy triangle is introduced and demonstrated as an effective means for determining vacancy concentrations near the melting point of aluminium. The Debye-Waller factor, quantifying the thermal vibration of aluminium atoms in pure aluminium, is reviewed and parametrised over the full range of temperatures where aluminium is a solid. The nature of interatomic bonding and the history of its characterisation in pure aluminium is reviewed with the unequivocal conclusion that it is purely tetrahedral in nature. The crystallography of aluminium alloys is then discussed in terms of all of the concepts covered for pure aluminium, using prominent alloy examples. The electron density domain theory of solid-state nucleation and precipitate growth is introduced and discussed as a new means of rationalising phase transformations in alloys from a crystallographic point of view.
ISSN:2331-8422
DOI:10.48550/arxiv.2002.01562