A Porous Framework Polymer Based on a Zinc(II) 4,4‘-Bipyridine-2,6,2‘,6‘-tetracarboxylate:  Synthesis, Structure, and “Zeolite-Like” Behaviors

The robust metal−organic framework compound {[Zn2(L)]·4H2O}∞ I has been synthesized by hydrothermal reaction of ZnCl2 and 4,4‘-bipyridine-2,6,2‘,6‘-tetracarboxylic acid (H4L). Compound I crystallizes in a chiral space group, P42212, with the chirality generated by the helical chains of hydrogen-bond...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society Vol. 128; no. 33; pp. 10745 - 10753
Main Authors Lin, Xiang, Blake, Alexander J, Wilson, Claire, Sun, Xue Zhong, Champness, Neil R, George, Michael W, Hubberstey, Peter, Mokaya, Robert, Schröder, Martin
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 23.08.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The robust metal−organic framework compound {[Zn2(L)]·4H2O}∞ I has been synthesized by hydrothermal reaction of ZnCl2 and 4,4‘-bipyridine-2,6,2‘,6‘-tetracarboxylic acid (H4L). Compound I crystallizes in a chiral space group, P42212, with the chirality generated by the helical chains of hydrogen-bonded guest water molecules rather than by the coordination framework. Removal of guest water molecules from the crystal affords the porous material, [Zn2(L)]∞ (II), which has very high thermal stability and is chemically inert. The N2 isotherm of II at 77 K suggests a uniform porous structure with a BET surface area of 312.7 m2/g and a remarkably strong interaction with N2 molecules (βE 0 = 29.6 kJ mol-1). II also exhibits significant gas storage capacities of 1.08 wt % for H2 at 4 bar and 77 K and 3.14 wt % (44.0 cm3/g, 67 v/v) for methane at 9 Bar at 298 K. The adsorption behavior of II toward organic solvent vapors has also been studied, and isotherms reveal that for different solvent vapors adsorption is dominated by two types of processes, absorbate−absorbate or absorbate−absorbent interactions. The adsorption and desorption kinetic processes in II are determined mainly by the molecular size of the guest species and their interaction with the host.
Bibliography:ark:/67375/TPS-2HX0Q1SL-H
istex:E22F1E9F51B05FE90CA698C3EB8F7029CAAA654F
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
DOI:10.1021/ja060946u