Gravitation and Special Relativity
A mathematical derivation of Maxwell's equations for gravitation, based on a mathematical proof of Faraday's Law, is presented. The theory provides a linear, relativistic Lagrangian field theory of gravity in a weak field, and paves the way to a better understanding of the structure of the...
Saved in:
Published in | arXiv.org |
---|---|
Main Author | |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
20.05.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A mathematical derivation of Maxwell's equations for gravitation, based on a mathematical proof of Faraday's Law, is presented. The theory provides a linear, relativistic Lagrangian field theory of gravity in a weak field, and paves the way to a better understanding of the structure of the energy-momentum tensor in the Einstein Field Equations. Hence it is directly relevant to problems in modern cosmology. The derivation, independent of the perturbation theory of Einstein's equations, puts the gravitational and electromagnetic fields on an equal footing for weak fields, contrary to generally held views. The historical objections to a linear Lorentz invariant field theory of gravity are refuted for weak fields. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1305.6875 |