Performance Analysis of Arbitrarily-Shaped Underlay Cognitive Networks: Effects of Secondary User Activity Protocols

This paper analyzes the performance of the primary and secondary users (SUs) in an arbitrarily-shaped underlay cognitive network. In order to meet the interference threshold requirement for a primary receiver (PU-Rx) at an arbitrary location, we consider different SU activity protocols which limit t...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Guo, Jing, Durrani, Salman, Zhou, Xiangyun
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 07.11.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper analyzes the performance of the primary and secondary users (SUs) in an arbitrarily-shaped underlay cognitive network. In order to meet the interference threshold requirement for a primary receiver (PU-Rx) at an arbitrary location, we consider different SU activity protocols which limit the number of active SUs. We propose a framework, based on the moment generating function (MGF) of the interference due to a random SU, to analytically compute the outage probability in the primary network, as well as the average number of active SUs in the secondary network. We also propose a cooperation-based SU activity protocol in the underlay cognitive network which includes the existing threshold-based protocol as a special case. We study the average number of active SUs for the different SU activity protocols, subject to a given outage probability constraint at the PU and we employ it as an analytical approach to compare the effect of different SU activity protocols on the performance of the primary and secondary networks.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2331-8422
DOI:10.48550/arxiv.1403.4669