Convergence of the largest eigenvalue of normalized sample covariance matrices when p and n both tend to infinity with their ratio converging to zero
Let \(\mathbf{X}_p=(\mathbf{s}_1,...,\mathbf{s}_n)=(X_{ij})_{p \times n}\) where \(X_{ij}\)'s are independent and identically distributed (i.i.d.) random variables with \(EX_{11}=0,EX_{11}^2=1\) and \(EX_{11}^4<\infty\). It is showed that the largest eigenvalue of the random matrix \(\mathbf...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
23.11.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Let \(\mathbf{X}_p=(\mathbf{s}_1,...,\mathbf{s}_n)=(X_{ij})_{p \times n}\) where \(X_{ij}\)'s are independent and identically distributed (i.i.d.) random variables with \(EX_{11}=0,EX_{11}^2=1\) and \(EX_{11}^4<\infty\). It is showed that the largest eigenvalue of the random matrix \(\mathbf{A}_p=\frac{1}{2\sqrt{np}}(\mathbf{X}_p\mathbf{X}_p^{\prime}-n\mathbf{I}_p)\) tends to 1 almost surely as \(p\rightarrow\infty,n\rightarrow\infty\) with \(p/n\rightarrow0\). |
---|---|
Bibliography: | IMS-BEJ-BEJ381 |
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1211.5479 |