Cyclic magnetic activity due to turbulent convection in spherical wedge geometry
We report on simulations of turbulent, rotating, stratified, magnetohydrodynamic convection in spherical wedge geometry. An initially small-scale, random, weak-amplitude magnetic field is amplified by several orders of magnitude in the course of the simulation to form oscillatory large-scale fields...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
18.11.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We report on simulations of turbulent, rotating, stratified, magnetohydrodynamic convection in spherical wedge geometry. An initially small-scale, random, weak-amplitude magnetic field is amplified by several orders of magnitude in the course of the simulation to form oscillatory large-scale fields in the saturated state of the dynamo. The differential rotation is solar-like (fast equator), but neither coherent meridional poleward circulation nor near-surface shear layer develop in these runs. In addition to a poleward branch of magnetic activity beyond 50 degrees latitude, we find for the first time a pronounced equatorward branch at around 20 degrees latitude, reminiscent of the solar cycle. |
---|---|
Bibliography: | Nordita-2012-040 |
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1205.4719 |