The effect of uniaxial pressure on the magnetic anisotropy of the Mn_{12}-Ac single-molecule magnet
We study the effect of uniaxial pressure on the magnetic hysteresis loops of the single-molecule magnet Mn_{12}-Ac. We find that the application of pressure along the easy axis increases the fields at which quantum tunneling of magnetization occurs. The observations are attributed to an increase in...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
17.05.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We study the effect of uniaxial pressure on the magnetic hysteresis loops of the single-molecule magnet Mn_{12}-Ac. We find that the application of pressure along the easy axis increases the fields at which quantum tunneling of magnetization occurs. The observations are attributed to an increase in the molecule's magnetic anisotropy constant D of 0.142(1)%/kbar. The increase in D produces a small, but measurable increase in the effective energy barrier for magnetization reversal. Density-functional theory calculations also predict an increase in the barrier with applied pressure. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1302.2276 |