Mechanically driven growth of quasi-two dimensional microbial colonies

We study colonies of non-motile, rod-shaped bacteria growing on solid substrates. In our model, bacteria interact purely mechanically, by pushing each other away as they grow, and consume a diffusing nutrient. We show that mechanical interactions control the velocity and shape of the advancing front...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Farrell, F D C, Hallatschek, O, Marenduzzo, D, Waclaw, B
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 02.05.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study colonies of non-motile, rod-shaped bacteria growing on solid substrates. In our model, bacteria interact purely mechanically, by pushing each other away as they grow, and consume a diffusing nutrient. We show that mechanical interactions control the velocity and shape of the advancing front, which leads to features that cannot be captured by established Fisher-Kolmogorov models. In particular, we find that the velocity depends on the elastic modulus of bacteria or their stickiness to the surface. Interestingly, we predict that the radius of an incompressible, strictly two-dimensional colony cannot grow linearly in time. Importantly, mechanical interactions can also account for the nonequilibrium transition between circular and branching colonies, often observed in the lab.
ISSN:2331-8422
DOI:10.48550/arxiv.1303.6101