Baroclinic Generation of Potential Vorticity in an Embedded Planet-Disk System
We use a multi-dimensional hydrodynamics code to study the gravitational interaction between an embedded planet and a protoplanetary disk with emphasis on the generation of vortensity (Potential Vorticity or PV) through a Baroclinic Instability. We show that the generation of PV is very common and e...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
23.05.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We use a multi-dimensional hydrodynamics code to study the gravitational interaction between an embedded planet and a protoplanetary disk with emphasis on the generation of vortensity (Potential Vorticity or PV) through a Baroclinic Instability. We show that the generation of PV is very common and effective in non-barotropic disks through the Baroclinic Instability, especially within the coorbital region. Our results also complement previous work that non-axisymmetric Rossby-Wave Instabilities (RWIs, Lovelace et al. 1999) are likely to develop at local minima of PV distribution that are generated by the interaction between a planet and an inviscid barotropic disk. The development of RWIs results in non-axisymmetric density blobs, which exert stronger torques onto the planet when they move to the vicinity of the planet. Hence, large amplitude oscillations are introduced to the time behavior of the total torque acted on the planet by the disk. In current simulations, RWIs do not change the overall picture of inward orbital migration but cause a non-monotonic behavior to the migration speed. As a side effect, RWIs also introduce interesting structures into the disk. These structures may help the formation of Earth-like planets in the Habitable Zone or Hot Earths interior to a close-in giant planet. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0805.3009 |