Scale-Invariant Dissipationless Chiral Transport in Magnetic Topological Insulators beyond the Two-Dimensional Limit
We investigate the quantum anomalous Hall Effect (QAHE) and related chiral transport in the millimeter-size (Cr0.12Bi0.26Sb0.62)2Te3 films. With high sample quality and robust magnetism at low temperatures, the quantized Hall conductance of e2/h is found to persist even when the film thickness is be...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
06.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We investigate the quantum anomalous Hall Effect (QAHE) and related chiral transport in the millimeter-size (Cr0.12Bi0.26Sb0.62)2Te3 films. With high sample quality and robust magnetism at low temperatures, the quantized Hall conductance of e2/h is found to persist even when the film thickness is beyond the two-dimensional (2D) hybridization limit. Meanwhile, the Chern insulator-featured chiral edge conduction is manifested by the non-local transport measurements. In contrast to the 2D hybridized thin film, an additional weakly field-dependent longitudinal resistance is observed in the 10 quintuple-layer film, suggesting the influence of the film thickness on the dissipative edge channel in the QAHE regime. The extension of QAHE into the three-dimensional thickness region addresses the universality of this quantum transport phenomenon and motivates the exploration of new QAHE phases with tunable Chern numbers. In addition, the observation of the scale-invariant dissipationless chiral propagation on a macroscopic scale makes a major stride towards ideal low-power interconnect applications. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1406.0106 |