Fundamental quantum limits to waveform detection
Ever since the inception of gravitational-wave detectors, limits imposed by quantum mechanics to the detection of time-varying signals have been a subject of intense research and debate. Drawing insights from quantum information theory, quantum detection theory, and quantum measurement theory, here...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
16.10.2012
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.1204.3697 |
Cover
Loading…
Summary: | Ever since the inception of gravitational-wave detectors, limits imposed by quantum mechanics to the detection of time-varying signals have been a subject of intense research and debate. Drawing insights from quantum information theory, quantum detection theory, and quantum measurement theory, here we prove lower error bounds for waveform detection via a quantum system, settling the long-standing problem. In the case of optomechanical force detection, we derive analytic expressions for the bounds in some cases of interest and discuss how the limits can be approached using quantum control techniques. |
---|---|
Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1204.3697 |