Nanocellulose-Based Interpenetrating Polymer Network (IPN) Hydrogels for Cartilage Applications

Double cross-linked interpenetrating polymer network (IPN) hydrogels of sodium alginate and gelatin (SA/G) reinforced with 50 wt % cellulose nanocrystals (CNC) have been prepared via the freeze-drying process. The IPNs were designed to incorporate CNC with carboxyl surface groups as a part of the ne...

Full description

Saved in:
Bibliographic Details
Published inBiomacromolecules Vol. 17; no. 11; pp. 3714 - 3723
Main Authors Naseri, Narges, Deepa, B, Mathew, Aji P, Oksman, Kristiina, Girandon, Lenart
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 14.11.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Double cross-linked interpenetrating polymer network (IPN) hydrogels of sodium alginate and gelatin (SA/G) reinforced with 50 wt % cellulose nanocrystals (CNC) have been prepared via the freeze-drying process. The IPNs were designed to incorporate CNC with carboxyl surface groups as a part of the network contribute to the structural integrity and mechanical stability of the hydrogel. Structural morphology studies of the hydrogels showed a three-dimensional (3D) network of interconnected pores with diameters in the range of 10–192 μm and hierarchical pores with a nanostructured pore wall roughness, which has potential benefits for cell adhesion. Significant improvements in the tensile strength and strain were achieved in 98% RH at 37 °C for CNC cross-linked IPNs. The high porosity of the scaffolds (>93%), high phosphate buffered saline (PBS) uptake, and cytocompatibility toward mesenchymal stem cells (MSCs) are confirmed and considered beneficial for use as a substitute for cartilage.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1525-7797
1526-4602
1526-4602
DOI:10.1021/acs.biomac.6b01243