Effect of magnetic anisotropy on spin-dependent thermoelectric effects in nanoscopic systems

Conventional and spin-related thermoelectric effects in electronic transport through a nanoscopic system exhibiting magnetic anisotropy \(-\)with both uniaxial and transverse components\(-\) are studied theoretically in the linear response regime. In particular, a magnetic tunnel junction with a lar...

Full description

Saved in:
Bibliographic Details
Published inarXiv.org
Main Authors Misiorny, Maciej, Barnaś, Józef
Format Paper Journal Article
LanguageEnglish
Published Ithaca Cornell University Library, arXiv.org 11.11.2015
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Conventional and spin-related thermoelectric effects in electronic transport through a nanoscopic system exhibiting magnetic anisotropy \(-\)with both uniaxial and transverse components\(-\) are studied theoretically in the linear response regime. In particular, a magnetic tunnel junction with a large-spin impurity \(-\)either a magnetic atom or a magnetic molecule\(-\) embedded in the barrier is considered as an example. Owing to magnetic interaction with the impurity, conduction electrons traversing the junction can scatter on the impurity, which effectively can lead to angular momentum and energy exchange between the electrons and the impurity. As we show, such processes have a profound effect on the thermoelectric response of the system. Specifically, we present a detailed analysis of charge, spin and thermal conductance, together with the Seebeck and spin Seebeck coefficients (thermopowers). Since the scattering mechanism also involves processes when electrons are inelastically scattered back to the same electrode, one can expect the flow of spin and energy also in the absence of charge transport through the junction. This, in turn, results in a finite spin thermopower, and the magnetic anisotropy plays a key role for this effect to occur.
ISSN:2331-8422
DOI:10.48550/arxiv.1411.2741