THE COLLISIONAL EVOLUTION OF UNDIFFERENTIATED ASTEROIDS AND THE FORMATION OF CHONDRITIC METEOROIDS

ABSTRACT Most meteorites are fragments from recent collisions experienced in the asteroid belt. In such a hypervelocity collision, the smaller collision partner is destroyed, whereas a crater on the asteroid is formed or it is entirely disrupted, too. The present size distribution of the asteroid be...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 824; no. 1; p. 12
Main Authors Beitz, E., Blum, J., Parisi, M. G., Trigo-Rodriguez, J.
Format Journal Article
LanguageEnglish
Published The American Astronomical Society 10.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:ABSTRACT Most meteorites are fragments from recent collisions experienced in the asteroid belt. In such a hypervelocity collision, the smaller collision partner is destroyed, whereas a crater on the asteroid is formed or it is entirely disrupted, too. The present size distribution of the asteroid belt suggests that an asteroid with a 100 km radius is encountered 1014 times during the lifetime of the solar system by objects larger than 10 cm in radius; the formed craters cover the surface of the asteroid about 100 times. We present a Monte Carlo code that takes into account the statistical bombardment of individual infinitesimally small surface elements, the subsequent compaction of the underlying material, and the formation of a crater and a regolith layer. For the entire asteroid, 10,000 individual surface elements are calculated. We compare the ejected material from the calculated craters with the shock stage of meteorites with low petrologic type and find that these most likely stem from smaller parent bodies that do not possess a significant regolith layer. For larger objects, which accrete a regolith layer, a prediction of the thickness depending on the largest visible crater can be made. Additionally, we compare the crater distribution of an object initially 100 km in radius with the shape model of the asteroid (21) Lutetia, assuming it to be initially formed spherical with a radius that is equal to its longest present ellipsoid length. Here we find the shapes of both objects to show resemblance to each other.
Bibliography:The Solar System
ApJ99910
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0004-637X
1538-4357
DOI:10.3847/0004-637X/824/1/12