Evolution of cusped light-like Wilson loops and geometry of the loop space
We discuss the possible relation between certain geometrical properties of the loop space and energy evolution of the cusped Wilson exponentials defined on the light-cone. Analysis of the area differential equations for this special class of the Wilson loops calls for careful treatment of the ultrav...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
31.10.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We discuss the possible relation between certain geometrical properties of the loop space and energy evolution of the cusped Wilson exponentials defined on the light-cone. Analysis of the area differential equations for this special class of the Wilson loops calls for careful treatment of the ultraviolet and rapidity divergences which make those loops non-multiplicatively-renormalizable. We propose to consider the renormalization properties of the light-cone cusped Wilson loops from the point of view of the universal quantum dynamical approach introduced by Schwinger. We conjecture and discuss the relevance of the Makeenko-Migdal loop equations supplied with the modified Schwinger principle to the energy evolution of some phenomenologically significant objects, such as transverse-momentum dependent distribution functions, collinear parton densities at large-\(x\), etc. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1208.1631 |