A Microfluidic Diluter Based on Pulse Width Flow Modulation

We demonstrate that pulse width flow modulation (PWFM) can be used to design fast, accurate, and precise multistage dilution modules for microfluidic devices. The PWFM stage unit presented here yields 10-fold dilution, but several PWFM stages can be connected in series to yield higher-order dilution...

Full description

Saved in:
Bibliographic Details
Published inAnalytical chemistry (Washington) Vol. 81; no. 13; pp. 5549 - 5556
Main Authors Ainla, Alar, Gözen, Irep, Orwar, Owe, Jesorka, Aldo
Format Journal Article
LanguageEnglish
Published Washington, DC American Chemical Society 01.07.2009
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We demonstrate that pulse width flow modulation (PWFM) can be used to design fast, accurate, and precise multistage dilution modules for microfluidic devices. The PWFM stage unit presented here yields 10-fold dilution, but several PWFM stages can be connected in series to yield higher-order dilutions. We have combined two stages in a device thus capable of diluting up to 100-fold, and we have experimentally determined a set of rules that can be conveniently utilized to design multistage diluters. Microfabrication with resist-based molds yielded geometrical channel height variances of 7% (22.9(16) μm) with corresponding hydraulic resistance variances of ∼20%. Pulsing frequencies, channel lengths, and flow pressures can be chosen within a wide range to establish the desired diluter properties. Finally, we illustrate the benefits of on-chip dilution in an example application where we investigate the effect of the Ca2+ concentration on a phospholipid bilayer spreading from a membrane reservoir onto a SiO2 surface. This is one of many possible applications where flexible concentration control is desirable.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0003-2700
1520-6882
1520-6882
DOI:10.1021/ac9010028