Optimal k-fold colorings of webs and antiwebs
A k-fold x-coloring of a graph is an assignment of (at least) k distinct colors from the set {1, 2, ..., x} to each vertex such that any two adjacent vertices are assigned disjoint sets of colors. The smallest number x such that G admits a k-fold x-coloring is the k-th chromatic number of G, denoted...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , , , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
29.08.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A k-fold x-coloring of a graph is an assignment of (at least) k distinct colors from the set {1, 2, ..., x} to each vertex such that any two adjacent vertices are assigned disjoint sets of colors. The smallest number x such that G admits a k-fold x-coloring is the k-th chromatic number of G, denoted by \chi_k(G). We determine the exact value of this parameter when G is a web or an antiweb. Our results generalize the known corresponding results for odd cycles and imply necessary and sufficient conditions under which \chi_k(G) attains its lower and upper bounds based on the clique, the fractional chromatic and the chromatic numbers. Additionally, we extend the concept of \chi-critical graphs to \chi_k-critical graphs. We identify the webs and antiwebs having this property, for every integer k <= 1. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1108.5757 |