Scalar and vector Keldysh models in the time domain
The exactly solvable Keldysh model of disordered electron system in a random scattering field with extremely long correlation length is converted to the time-dependent model with extremely long relaxation. The dynamical problem is solved for the ensemble of two-level systems (TLS) with fluctuating w...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
15.01.2009
|
Subjects | |
Online Access | Get full text |
ISSN | 2331-8422 |
DOI | 10.48550/arxiv.0901.2246 |
Cover
Loading…
Summary: | The exactly solvable Keldysh model of disordered electron system in a random scattering field with extremely long correlation length is converted to the time-dependent model with extremely long relaxation. The dynamical problem is solved for the ensemble of two-level systems (TLS) with fluctuating well depths having the discrete Z_2 symmetry. It is shown also that the symmetric TLS with fluctuating barrier transparency may be described in terms of the planar Keldysh model with dime-dependent random planar rotations in xy plane having continuous SO(2) symmetry. The case of simultaneous fluctuations of the well depth and barrier transparency is subject to non-abelian algebra. Application of this model to description of dynamic fluctuations in quantum dots and optical lattices is discussed. |
---|---|
Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0901.2246 |