On the spectrum of the periodic Dirac operator
The absolute continuity of the spectrum for the periodic Dirac operator $$ \hat D=\sum_{j=1}^n(-i\frac {\partial}{\partial x_j}-A_j)\hat \alpha_j + \hat V^{(0)}+\hat V^{(1)}, x\in R^n, n\geq 3, $$ is proved given that either \(A\in C(R^n;R^n)\cap H^q_{loc}(R^n;R^n)\), 2q > n-2, or the Fourier ser...
Saved in:
Published in | arXiv.org |
---|---|
Main Author | |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
28.05.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The absolute continuity of the spectrum for the periodic Dirac operator $$ \hat D=\sum_{j=1}^n(-i\frac {\partial}{\partial x_j}-A_j)\hat \alpha_j + \hat V^{(0)}+\hat V^{(1)}, x\in R^n, n\geq 3, $$ is proved given that either \(A\in C(R^n;R^n)\cap H^q_{loc}(R^n;R^n)\), 2q > n-2, or the Fourier series of the vector potential \(A:R^n\to R^n\) is absolutely convergent. Here, \(\hat V^{(s)}=(\hat V^{(s)})^*\) are continuous matrix functions and \(\hat V^{(s)}\hat \alpha_j=(-1}^s\hat \alpha_j\hat V^{(s)}\) for all anticommuting Hermitian matrices \(\hat \alpha_j\), \(\hat \alpha_j^2=\hat I\), s=0,1. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0905.4622 |