How weak values emerge in joint measurements on cloned quantum systems
A statistical analysis of optimal universal cloning shows that it is possible to identify an ideal (but non-positive) copying process that faithfully maps all properties of the original Hilbert space onto two separate quantum systems. The joint probabilities for non-commuting measurements on separat...
Saved in:
Published in | arXiv.org |
---|---|
Main Author | |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
28.05.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A statistical analysis of optimal universal cloning shows that it is possible to identify an ideal (but non-positive) copying process that faithfully maps all properties of the original Hilbert space onto two separate quantum systems. The joint probabilities for non-commuting measurements on separate clones then correspond to the real parts of the complex joint probabilities observed in weak measurements on a single system, where the measurements on the two clones replace the corresponding sequence of weak measurement and post-selection. The imaginary parts of weak measurement statics can be obtained by replacing the cloning process with a partial swap operation. A controlled-swap operation combines both processes, making the complete weak measurement statistics accessible as a well-defined contribution to the joint probabilities of fully resolved projective measurements on the two output systems. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1111.5910 |