Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction

Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature’s own high-info...

Full description

Saved in:
Bibliographic Details
Published inChemical reviews Vol. 122; no. 24; pp. 17397 - 17478
Main Authors Shao, Li, Ma, Jinrong, Prelesnik, Jesse L., Zhou, Yicheng, Nguyen, Mary, Zhao, Mingfei, Jenekhe, Samson A., Kalinin, Sergei V., Ferguson, Andrew L., Pfaendtner, Jim, Mundy, Christopher J., De Yoreo, James J., Baneyx, François, Chen, Chun-Long
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 28.12.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature’s own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and “smart” architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES)
SC0019288; AC05-76RL01830
ISSN:0009-2665
1520-6890
1520-6890
DOI:10.1021/acs.chemrev.2c00220