Intrinsic Energy Dissipation in CVD-Grown Graphene Nanoresonators
We utilize classical molecular dynamics to study the the quality (Q)-factors of monolayer CVD-grown graphene nanoresonators. In particular, we focus on the effects of intrinsic grain boundaries of different orientations, which result from the CVD growth process, on the Q-factors. For a range of miso...
Saved in:
Published in | arXiv.org |
---|---|
Main Authors | , |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
06.04.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We utilize classical molecular dynamics to study the the quality (Q)-factors of monolayer CVD-grown graphene nanoresonators. In particular, we focus on the effects of intrinsic grain boundaries of different orientations, which result from the CVD growth process, on the Q-factors. For a range of misorientations orientation angles that are consistent with those seen experimentally in CVD-grown graphene, i.e. 0\(^{\circ}\) to \(\sim20^{\circ}\), we find that the Q-factors for graphene with intrinsic grain boundaries are 1-2 orders of magnitude smaller than that of pristine monolayer graphene. We find that the Q-factor degradation is strongly influenced by both the symmetry and structure of the 5-7 defect pairs that occur at the grain boundary. Because of this, we also demonstrate that find the Q-factors CVD-grown graphene can be significantly elevated, and approach that of pristine graphene, through application of modest (1%) tensile strain. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1204.1506 |