Dirac fermions in a power-law-correlated random vector potential
We study localization properties of two-dimensional Dirac fermions subject to a power-law-correlated random vector potential describing, e.g., the effect of "ripples" in graphene. By using a variety of techniques (low-order perturbation theory, self-consistent Born approximation, replicas,...
Saved in:
Published in | arXiv.org |
---|---|
Main Author | |
Format | Paper Journal Article |
Language | English |
Published |
Ithaca
Cornell University Library, arXiv.org
20.06.2007
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We study localization properties of two-dimensional Dirac fermions subject to a power-law-correlated random vector potential describing, e.g., the effect of "ripples" in graphene. By using a variety of techniques (low-order perturbation theory, self-consistent Born approximation, replicas, and supersymmetry) we make a case for a possible complete localization of all the electronic states and compute the density of states. |
---|---|
Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.0705.4105 |