Seismic Performance of Precast Reinforced and Prestressed Concrete Walls

Two geometrically identical half-scale precast concrete cantilever wall units were constructed and tested under quasi-static reversed cyclic lateral loading. One unit was a code compliant conventionally reinforced specimen, designed to emulate the behavior of a ductile cast-in-place concrete wall. T...

Full description

Saved in:
Bibliographic Details
Published inJournal of structural engineering (New York, N.Y.) Vol. 129; no. 3; pp. 286 - 296
Main Authors Holden, Tony, Restrepo, Jose, Mander, John B
Format Journal Article
LanguageEnglish
Published Reston, VA American Society of Civil Engineers 01.03.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Two geometrically identical half-scale precast concrete cantilever wall units were constructed and tested under quasi-static reversed cyclic lateral loading. One unit was a code compliant conventionally reinforced specimen, designed to emulate the behavior of a ductile cast-in-place concrete wall. The other unit was part of a precast partially prestressed system that incorporated post-tensioned unbonded carbon fiber tendons and steel fiber reinforced concrete. Hysteretic energy dissipation devices were provided in the latter unit in the form of low yield strength tapered longitudinal reinforcement, acting as a fuse connection between the wall panel and the foundation beam. The conventional precast reinforced wall performed very well in terms of the ductility capacity and energy absorption capability, reaching 2.5% drift before significant strength degradation occurred. The precast partially prestressed wall unit achieved drift levels well in excess of 3% with no visible damage to the wall panel prior to failure. Test results and performance comparisons between the precast partially prestressed wall system and the precast conventionally reinforced unit are presented.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0733-9445
1943-541X
DOI:10.1061/(ASCE)0733-9445(2003)129:3(286)