Simulating Seismic Response of Cantilever Retaining Walls

Many failures of retaining walls during earthquakes occurred near waterfront. A reasonably accurate evaluation of earthquake effects under such circumstance requires proven analytical models for dynamic earth pressure, hydrodynamic pressure, and excess pore pressure. However, such analytical procedu...

Full description

Saved in:
Bibliographic Details
Published inJournal of geotechnical and geoenvironmental engineering Vol. 133; no. 5; pp. 539 - 549
Main Authors Madabhushi, S. P. G, Zeng, X
Format Journal Article
LanguageEnglish
Published New York, NY American Society of Civil Engineers 01.05.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Many failures of retaining walls during earthquakes occurred near waterfront. A reasonably accurate evaluation of earthquake effects under such circumstance requires proven analytical models for dynamic earth pressure, hydrodynamic pressure, and excess pore pressure. However, such analytical procedures, especially for excess pore pressure, are not available and hence comprehensive numerical procedures are needed. This paper presents the results of a finite-element simulation of a flexible, cantilever retaining wall with dry and saturated backfill under earthquake loading, and the results are compared with that of a centrifuge test. It is found that bending moments in the wall increased significantly during earthquakes both when backfill is dry or saturated. After base shaking, the residual moment on the wall was also significantly higher than the moment under static loading. Liquefaction of backfill soil contributed to the failure of the wall, which had large outward movement and uneven subsidence in the backfill. The numerical simulation was able to model quite well the main characteristics of acceleration, bending moment, displacement, and excess pore pressure recorded in the centrifuge test in most cases with the simulation for dry backfill slightly better than that for saturated backfill.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1090-0241
1943-5606
DOI:10.1061/(ASCE)1090-0241(2007)133:5(539)