The Phosphatase Cascade Nem1/Spo7-Pah1 Regulates Fungal Development, Lipid Homeostasis, and Virulence in Botryosphaeria dothidea
Protein phosphatase complex Nem1/Spo7 plays crucial roles in the regulation of various biological processes in eukaryotes. However, its biological functions in phytopathogenic fungi are not well understood. In this study, genome-wide transcriptional profiling analysis revealed that Nem1 was signific...
Saved in:
Published in | Microbiology spectrum Vol. 11; no. 3; p. e0388122 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
15.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Protein phosphatase complex Nem1/Spo7 plays crucial roles in the regulation of various biological processes in eukaryotes. However, its biological functions in phytopathogenic fungi are not well understood. In this study, genome-wide transcriptional profiling analysis revealed that Nem1 was significantly upregulated during the infection process of Botryosphaeria dothidea, and we identified and characterized the phosphatase complex Nem1/Spo7 and its substrate Pah1 (a phosphatidic acid phosphatase) in B. dothidea. Nem1/Spo7 physically interacted with and dephosphorylated Pah1 to promote triacylglycerol (TAG) and subsequent lipid droplet (LD) synthesis. Moreover, the Nem1/Spo7-dependently dephosphorylated Pah1 functioned as a transcriptional repressor of the key nuclear membrane biosynthesis genes to regulate nuclear membrane morphology. In addition, phenotypic analyses showed that the phosphatase cascade Nem1/Spo7-Pah1 was involved in regulating mycelial growth, asexual development, stress responses, and virulence of
.
Botryosphaeria canker and fruit rot caused by the fungus
is one of the most destructive diseases of apple worldwide. Our data indicated that the phosphatase cascade Nem1/Spo7-Pah1 plays important roles in the regulation of fungal growth, development, lipid homeostasis, environmental stress responses, and virulence in
. The findings will contribute to the in-depth and comprehensive understanding of Nem1/Spo7-Pah1 in fungi and the development of target-based fungicides for disease management. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The authors declare no conflict of interest. |
ISSN: | 2165-0497 2165-0497 |
DOI: | 10.1128/spectrum.03881-22 |